#### [11:00-11:05] Anti-aliasing in computer graphics

extent and aperiodic.

When rendering a 3d scene, it's possible for the spatial resolution of the geometry or textures to exceed the sampling rate (resolution or number of pixels). A low-pass antialiasing filter can be applied to reduce these artifacts. <u>Example</u>.

#### [11:05-11:30] Differences between discrete-time and continuous time:

$$x[n] = x(t)|_{t=nT_s}$$

| Continuous-time                                                                                                                    | Discrete-time                                            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| Time axis                                                                                                                          |                                                          |  |  |
| Real-valued time axis                                                                                                              | Integer valued time axis                                 |  |  |
| Periodicity                                                                                                                        |                                                          |  |  |
| Periodicity must align with integer grid. See handout D. For two-sided cosine: $x[n] =$                                            |                                                          |  |  |
| $\cos(\omega_0 n)$ where $\omega_0 = 2\pi \frac{f_0}{f_S} = 2\pi \frac{N}{L}$ where N and L are relatively prime integers $f_0$ is |                                                          |  |  |
| the frequency, and $f_s$ is the sampling rate. For periodicity, we require                                                         |                                                          |  |  |
| $x[n+N_0] = \cos\left(2\pi \frac{N}{L}n\right) = x[n]$                                                                             |                                                          |  |  |
| So the discrete-time cosine is periodic when $N$ and $L$ are integers. The smallest value                                          |                                                          |  |  |
| of $N_0$ is $L$ . If $f_0/f_s$ is irrational (meaning it cannot be represented as a ratio of two                                   |                                                          |  |  |
| integers), then the discrete-time cosine is not periodic.                                                                          |                                                          |  |  |
| Frequency Domain                                                                                                                   |                                                          |  |  |
| $\omega$ : continuous-time frequency (rad/sec)                                                                                     | $\widehat{\omega}$ : continuous-time frequency (rad/sec) |  |  |
| Frequency spectrum may be infinite in                                                                                              | Frequency spectrum is periodic (repeats                  |  |  |

## Overview of remaining topics

every  $2\pi$ )

| Domain                   | Торіс                  | Discrete Time          | <b>Continuous Time</b> |
|--------------------------|------------------------|------------------------|------------------------|
| Time                     | Signals                | <i>SPFirst</i> Ch. 4 ✓ | SPFirst Ch. 2 ✓        |
|                          | Systems                | <i>SPFirst</i> Ch. 5   | SPFirst Ch. 9          |
|                          | Convolution            | <i>SPFirst</i> Ch. 5   | SPFirst Ch. 9          |
| Frequency                | Fourier series         | **                     | SPFirst Ch. 3 ✓        |
|                          | Fourier transforms     | <i>SPFirst</i> Ch. 6   | SPFirst Ch. 11         |
|                          | Frequency response     | <i>SPFirst</i> Ch. 6   | SPFirst Ch. 10         |
| Generalized<br>Frequency | z / Laplace Transforms | <i>SPFirst</i> Ch. 7-8 | Supplemental Text      |
|                          | Transfer Functions     | <i>SPFirst</i> Ch. 7-8 | Supplemental Text      |
|                          | System Stability       | <i>SPFirst</i> Ch. 8   | SPFirst Ch. 9          |
| Mixed Signal             | Sampling               | → <i>SPFirst</i> Ch. 4 | SPFirst Ch. 12         |

#### [11:35-11:40]

The Nyquist rate (2  $f_{\text{max}}$ ) is different from the Nyquist frequency ( $f_s/2$ )

What happens if  $f_s = 2f_{max}$ ? Example:

$$x(t) = \cos(2\pi f_0 t), \quad -\infty < t < \infty$$

$$x[n] = x(t)|_{t=nT_S} = \cos\left(2\pi \frac{f_0}{f_S}n\right)$$

Let  $f_0 = \frac{1}{2}f_s$ . Then,

$$x[n] = \cos\left(2\pi \frac{\frac{1}{2}f_s}{f_s}n\right) = \cos(\pi n) = (-1)^n$$

What about  $y(t) = \sin(2\pi f_0 t)$  when  $f_0 = \frac{1}{2} f_s$ ?

$$y[n] = \sin(\pi n) = 0$$

So when  $f_s = 2f_0$ , a cosine makes it through the sampling process but sine does not.

## [11:50-12:10] Demo: sampling and reconstructing a sinusoid



# Reconstruction with a square pulse Sampling near the Nyquist rate

- Captures the correct number of zero crossings
- Amplitude is reduced
- Shape is not captured



#### [12:10-] Spectrum of discrete-time signal

A continuous time sinusoid contains frequencies at  $\pm f_0$ .

A discrete-time sinusoid also contains all aliases  $\widehat{\omega} = \frac{\omega_0}{f_s} + 2\pi \ell$  for  $\ell = 0, \pm 1, \pm 2, ...$ 

## Example #1: $f_0 = 100$ Hz, $f_s = 1000$ Hz (Oversampling)

100-Hz Cosine Wave: Sampled with  $T_s = 1$  msec (1000 Hz)



Example #2:  $f_0 = 100$  Hz,  $f_s = 80$  Hz (Aliasing by undersampling)



## Example #3: $f_0 = 100$ Hz, $f_s = 80$ Hz (Folding by undersampling)



| Continuous-Time Discrete-Time Time Domain Time Domain                          |
|--------------------------------------------------------------------------------|
| Time Domain Time Domain                                                        |
|                                                                                |
|                                                                                |
|                                                                                |
| 0 7                                                                            |
| time is real-valued                                                            |
| time is real-valued  Sampling: $t = nT_s$ time in integer-valued               |
|                                                                                |
| Penodicity will be different -                                                 |
| Penodicity will be different -<br>see handout Don Discrete-Time Penodicity     |
|                                                                                |
| Frequency Domain Frequency Domain Parodicty                                    |
| repeats                                                                        |
| repeats revers                                                                 |
| $\omega$ $\lessapprox \hat{\omega}$                                            |
| 1 1 31 1                                                                       |
| frequency is real-valued [rad/s] frequency is real-valued [rad/sarple]         |
| $\hat{\omega}_{o} = 2\pi \frac{f_{o}}{f_{c}}$                                  |
| wo-a".fs                                                                       |
| Sampling Theorem: fs>2forsfo< \fs                                              |
| Range of continuous time free captured:                                        |
| Range of continuous time freq captured:  - \frac{1}{2} fs < f < \frac{1}{2} fs |
| $-\pi < \omega < \pi$                                                          |
| $-1$ $< \omega < 1$                                                            |
|                                                                                |

S/1de 6-3

 $X(t) = \cos(2\pi f_s t)$  for  $-\infty < t < \infty$ Sample at  $f_s \rightarrow t = \frac{\gamma}{f_s}$ 

 $\times (n) = \times (t)$   $= \cos \left( \frac{\partial \pi}{\partial s} \right)$   $= \cos \left( \frac{\partial \pi}{\partial s} \right)$ 

Let  $f_0 = \frac{1}{2}f_{S_7}$  $\times [n] = \cos(2\pi \frac{1}{4}f_{S_7}n) = \cos(\pi n) = (-1)^n$ 

 $y(t) = \sin(2\pi f_0 t) \text{ and } let f_0 = \frac{1}{2} f_{s_0}$   $y(n) = \sin(\pi n) = 0$